skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Contreras-Vidal, JL"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this communication, a translational roadmap for a noninvasive Brain Machine Interface (BMI) system for rehabilitation is presented. This multi-faceted project addresses important engineering, clinical, end user and regulatory challenges. The goal is to improve the feasibility of at-home neurorehabilitation for patients with chronic stroke by providing a low-cost, portable, form fitting, reliable, and easy-to-use system. The proposed BMI system is also designed to enable direct communication between the end-user and clinician, allowing for continuous patient-specific rehabilitation optimization. 
    more » « less
  2. The physical design of the learning environment has been shown to contribute significantly to student performance and educational outcomes. However, the existing literature on this topic relies primarily on generalized observations rather than on rigorous empirical testing. Broad trends in environmental impacts have been noted, but there is a lack of detailed evidence about how specific design variables can affect learning performance. The goal of this study was to apply a new approach in examining classroom design innovations. We developed a protocol to evaluate the effectiveness of classroom designs by measuring the physical responses of study participants as they interacted with different designs using a virtual reality platform. Our hypothesis was that virtual “test runs” can help designers to identify potential problems and successes in their work prior to its being physically constructed. The results of our initial pilot study indicated that this approach could yield important results about human responses to classroom design, and that the virtual environment seemed to be a reliable testing substitute when compared against real classroom environments. In addition to leading toward practical conclusions about specific classroom design variables, this project provides a new kind of research method and toolset to test the potential human impacts of a wide variety of architectural innovations. 
    more » « less